To ensure that old applications aren't left without any provider, and
at the same time not forcing any default provider on applications that
know how to deal with them, we device the concept of fallback
providers, which are automatically activated if no other provider is
already activated.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8480)
in INSTALL, Configure, crypto/build.info, include/openssl/crmferr.h,
crypto/err/, include/openssl/err.h, and (to be updated:) util/libcrypto.num
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7646)
Adding a provider means creating an internal provier object and adding
it to the store. This allows the addition of built in providers, be it
in the OpenSSL libraries or in any application.
"Loading" a provider is defined broadly. A built in provider is already
"loaded" in essence and only needs activating, while a provider in a
dynamically loadable module requires actually loading the module itself.
In this API, "loading" a provider does both.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8287)
The OSSL_PROVIDER is the core object involved in loading a provider
module, initialize a provider and do the initial communication of
provider wide and core wide dispatch tables.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8287)
SSH's KDF is defined in RFC 4253 in Section 7.2
Signed-off-by: Simo Sorce <simo@redhat.com>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7290)
Properties are a sequence of comma separated name=value pairs. A name
without a corresponding value is assumed to be a Boolean and have the
true value 'yes'. Values are either strings or numbers. Strings can be
quoted either _"_ or _'_ or unquoted (with restrictions). There are no
escape characters inside strings. Number are either decimal digits or
'0x' followed by hexidecimal digits. Numbers are represented internally
as signed sixty four bit values.
Queries on properties are a sequence comma separated conditional tests.
These take the form of name=value (equality test), name!=value (inequality
test) or name (Boolean test for truth). Queries can be parsed, compared
against a definition or merged pairwise.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8224)
This commit adds a dedicated function in `EC_METHOD` to access a modular
field inversion implementation suitable for the specifics of the
implemented curve, featuring SCA countermeasures.
The new pointer is defined as:
`int (*field_inv)(const EC_GROUP*, BIGNUM *r, const BIGNUM *a, BN_CTX*)`
and computes the multiplicative inverse of `a` in the underlying field,
storing the result in `r`.
Three implementations are included, each including specific SCA
countermeasures:
- `ec_GFp_simple_field_inv()`, featuring SCA hardening through
blinding.
- `ec_GFp_mont_field_inv()`, featuring SCA hardening through Fermat's
Little Theorem (FLT) inversion.
- `ec_GF2m_simple_field_inv()`, that uses `BN_GF2m_mod_inv()` which
already features SCA hardening through blinding.
From a security point of view, this also helps addressing a leakage
previously affecting conversions from projective to affine coordinates.
This commit also adds a new error reason code (i.e.,
`EC_R_CANNOT_INVERT`) to improve consistency between the three
implementations as all of them could fail for the same reason but
through different code paths resulting in inconsistent error stack
states.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/8254)
Changed PKEY/KDF API to call the new API.
Added wrappers for PKCS5_PBKDF2_HMAC() and EVP_PBE_scrypt() to call the new EVP KDF APIs.
Documentation updated.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6674)
Signed-off-by: Antoine Salon <asalon@vmware.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7726)
Signed-off-by: Antoine Salon <asalon@vmware.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7726)
If the call the ERR_set_error_data() in ERR_add_error_vdata() fails then
a mem leak can occur. This commit checks that we successfully added the
error data, and if not frees the buffer.
Fixes#8085
Reviewed-by: Paul Yang <yang.yang@baishancloud.com>
(Merged from https://github.com/openssl/openssl/pull/8105)
A CAdES Basic Electronic Signature (CAdES-BES) contains, among other
specifications, a collection of Signing Certificate reference attributes,
stored in the signedData ether as ESS signing-certificate or as
ESS signing-certificate-v2. These are described in detail in Section 5.7.2
of RFC 5126 - CMS Advanced Electronic Signatures (CAdES).
This patch adds support for adding ESS signing-certificate[-v2] attributes
to CMS signedData. Although it implements only a small part of the RFC, it
is sufficient many cases to enable the `openssl cms` app to create signatures
which comply with legal requirements of some European States (e.g Italy).
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/7893)
1. In addition to overriding the default application name,
one can now also override the configuration file name
and flags passed to CONF_modules_load_file().
2. By default we still keep going when configuration file
processing fails. But, applications that want to be strict
about initialization errors can now make explicit flag
choices via non-null OPENSSL_INIT_SETTINGS that omit the
CONF_MFLAGS_IGNORE_RETURN_CODES flag (which had so far been
both undocumented and unused).
3. In OPENSSL_init_ssl() do not request OPENSSL_INIT_LOAD_CONFIG
if the options already include OPENSSL_INIT_NO_LOAD_CONFIG.
4. Don't set up atexit() handlers when called with INIT_BASE_ONLY.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7986)
It turns out that intialization may change the error number, so we
need to preserve the system error number in functions where
initialization is called for.
These are ERR_get_state() and err_shelve_state()
Fixes#7897
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7902)
This function can end up being called during ERR_get_error() if we are
initialising. ERR_get_error() must preserve errno since it gets called via
SSL_get_error(). If that function returns SSL_ERROR_SYSCALL then you are
supposed to inspect errno.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7680)
Previously, the API version limit was indicated with a numeric version
number. This was "natural" in the pre-3.0.0 because the version was
this simple number.
With 3.0.0, the version is divided into three separate numbers, and
it's only the major number that counts, but we still need to be able
to support pre-3.0.0 version limits.
Therefore, we allow OPENSSL_API_COMPAT to be defined with a pre-3.0.0
style numeric version number or with a simple major number, i.e. can
be defined like this for any application:
-D OPENSSL_API_COMPAT=0x10100000L
-D OPENSSL_API_COMPAT=3
Since the pre-3.0.0 numerical version numbers are high, it's easy to
distinguish between a simple major number and a pre-3.0.0 numerical
version number and to thereby support both forms at the same time.
Internally, we define the following macros depending on the value of
OPENSSL_API_COMPAT:
OPENSSL_API_0_9_8
OPENSSL_API_1_0_0
OPENSSL_API_1_1_0
OPENSSL_API_3
They indicate that functions marked for deprecation in the
corresponding major release shall not be built if defined.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7724)
Expected usage pattern is to unconditionally set error and then
wipe it if there was no actual error.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
It turns out that on VMS, strerror() returns messages with added
spaces at the end.
We wouldn't had noticed if it wasn't for perl trimming those spaces
off for its own sake and thereby having test/recipes/02-test_errstr.t
fail on VMS.
The safe fix is to do the same trimming ourselves.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/7701)
We stored copies of the system error texts in a fixed line size array,
which is a huge waste. Instead, use a static memory pool and pack all
the string in there. The wasted space at the end, if any, gives us
some leeway for longer strings than we have measured so far.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7681)
Remove GMAC demo program because it has been superceded by the EVP MAC one
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7548)
The MAC EVP_PKEY implementations are currently implemented for each
MAC. However, with the EVP_MAC API, only one such implementation is
needed.
This implementation takes into account the differences between HMAC
and CMAC implementations, and observes that all other current MAC
implementations seem to follow the HMAC model.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/7393)
We currently implement EVP MAC methods as EVP_PKEY methods. This
change creates a separate EVP API for MACs, to replace the current
EVP_PKEY ones.
A note about this EVP API and how it interfaces with underlying MAC
implementations:
Other EVP APIs pass the EVP API context down to implementations, and
it can be observed that the implementations use the pointer to their
own private data almost exclusively. The EVP_MAC API deviates from
that pattern by passing the pointer to the implementation's private
data directly, and thereby deny the implementations access to the
EVP_MAC context structure. This change is made to provide a clearer
separation between the EVP library itself and the implementations of
its supported algorithm classes.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/7393)
In pull request #4328 the seeding of the DRBG via RAND_add()/RAND_seed()
was implemented by buffering the data in a random pool where it is
picked up later by the rand_drbg_get_entropy() callback. This buffer
was limited to the size of 4096 bytes.
When a larger input was added via RAND_add() or RAND_seed() to the DRBG,
the reseeding failed, but the error returned by the DRBG was ignored
by the two calling functions, which both don't return an error code.
As a consequence, the data provided by the application was effectively
ignored.
This commit fixes the problem by a more efficient implementation which
does not copy the data in memory and by raising the buffer the size limit
to INT32_MAX (2 gigabytes). This is less than the NIST limit of 2^35 bits
but it was chosen intentionally to avoid platform dependent problems
like integer sizes and/or signed/unsigned conversion.
Additionally, the DRBG is now less permissive on errors: In addition to
pushing a message to the openssl error stack, it enters the error state,
which forces a reinstantiation on next call.
Thanks go to Dr. Falko Strenzke for reporting this issue to the
openssl-security mailing list. After internal discussion the issue
has been categorized as not being security relevant, because the DRBG
reseeds automatically and is fully functional even without additional
randomness provided by the application.
Fixes#7381
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/7382)
limit is ever reached.
This is a FIPS 140-2 requirement from IG A.5 "Key/IV Pair Uniqueness
Requirements from SP 800-38D".
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7129)
zero-length ID is allowed, but it's not allowed to skip the ID.
Fixes: #6534
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7113)
Since 0.9.7, all i2d_ functions were documented to allocate an output
buffer if the user didn't provide one, under these conditions (from
the 1.0.2 documentation):
For OpenSSL 0.9.7 and later if B<*out> is B<NULL> memory will be
allocated for a buffer and the encoded data written to it. In this
case B<*out> is not incremented and it points to the start of the
data just written.
i2d_ASN1_OBJECT was found not to do this, and would crash if a NULL
output buffer was provided.
Fixes#6914
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/6918)
Ensure that the certificate required alert actually gets sent (and doesn't
get translated into handshake failure in TLSv1.3).
Ensure that proper reason codes are given for the new TLSv1.3 alerts.
Remove an out of date macro for TLS13_AD_END_OF_EARLY_DATA. This is a left
over from an earlier TLSv1.3 draft that is no longer used.
Fixes#6804
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6809)
Some EC functions exist in *_GFp and *_GF2m forms, in spite of the
implementations between the two curve types being identical. This
commit provides equivalent generic functions with the *_GFp and *_GF2m
forms just calling the generic functions.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6815)
The spec says that a client MUST set legacy_version to TLSv1.2, and
requires servers to verify that it isn't SSLv3.
Fixes#6600
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6747)
By default `ec_scalar_mul_ladder` (which uses the Lopez-Dahab ladder
implementation) is used only for (k * Generator) or (k * VariablePoint).
ECDSA verification uses (a * Generator + b * VariablePoint): this commit
forces the use of `ec_scalar_mul_ladder` also for the ECDSA verification
path, while using the default wNAF implementation for any other case.
With this commit `ec_scalar_mul_ladder` loses the static attribute, and
is added to ec_lcl.h so EC_METHODs can directly use it.
While working on a new custom EC_POINTs_mul implementation, I realized
that many checks (e.g. all the points being compatible with the given
EC_GROUP, creating a temporary BN_CTX if `ctx == NULL`, check for the
corner case `scalar == NULL && num == 0`) were duplicated again and
again in every single implementation (and actually some
implementations lacked some of the tests).
I thought that it makes way more sense for those checks that are
independent from the actual implementation and should always be done, to
be moved in the EC_POINTs_mul wrapper: so this commit also includes
these changes.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6690)
This commit uses the new ladder scaffold to implement a specialized
ladder step based on differential addition-and-doubling in mixed
Lopez-Dahab projective coordinates, modified to independently blind the
operands.
The arithmetic in `ladder_pre`, `ladder_step` and `ladder_post` is
auto generated with tooling:
- see, e.g., "Guide to ECC" Alg 3.40 for reference about the
`ladder_pre` implementation;
- see https://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3
for the differential addition-and-doubling formulas implemented in
`ladder_step`;
- see, e.g., "Fast Multiplication on Elliptic Curves over GF(2**m)
without Precomputation" (Lopez and Dahab, CHES 1999) Appendix Alg Mxy
for the `ladder_post` implementation to recover the `(x,y)` result in
affine coordinates.
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Co-authored-by: Sohaib ul Hassan <soh.19.hassan@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6690)
for specialized Montgomery ladder implementations
PR #6009 and #6070 replaced the default EC point multiplication path for
prime and binary curves with a unified Montgomery ladder implementation
with various timing attack defenses (for the common paths when a secret
scalar is feed to the point multiplication).
The newly introduced default implementation directly used
EC_POINT_add/dbl in the main loop.
The scaffolding introduced by this commit allows EC_METHODs to define a
specialized `ladder_step` function to improve performances by taking
advantage of efficient formulas for differential addition-and-doubling
and different coordinate systems.
- `ladder_pre` is executed before the main loop of the ladder: by
default it copies the input point P into S, and doubles it into R.
Specialized implementations could, e.g., use this hook to transition
to different coordinate systems before copying and doubling;
- `ladder_step` is the core of the Montgomery ladder loop: by default it
computes `S := R+S; R := 2R;`, but specific implementations could,
e.g., implement a more efficient formula for differential
addition-and-doubling;
- `ladder_post` is executed after the Montgomery ladder loop: by default
it's a noop, but specialized implementations could, e.g., use this
hook to transition back from the coordinate system used for optimizing
the differential addition-and-doubling or recover the y coordinate of
the result point.
This commit also renames `ec_mul_consttime` to `ec_scalar_mul_ladder`,
as it better corresponds to what this function does: nothing can be
truly said about the constant-timeness of the overall execution of this
function, given that the underlying operations are not necessarily
constant-time themselves.
What this implementation ensures is that the same fixed sequence of
operations is executed for each scalar multiplication (for a given
EC_GROUP), with no dependency on the value of the input scalar.
Co-authored-by: Sohaib ul Hassan <soh.19.hassan@gmail.com>
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6690)
Fix the NULL check lack in a different way that is more compatible with
non-NULL branch. Refer #6632
Also mark and pop the error stack instead of clearing all errors when something
goes awry in CONF_get_number.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6643)
Currently if you encounter application data while waiting for a
close_notify from the peer, and you have called SSL_shutdown() then
you will get a -1 return (fatal error) and SSL_ERROR_SYSCALL from
SSL_get_error(). This isn't accurate (it should be SSL_ERROR_SSL) and
isn't persistent (you can call SSL_shutdown() again and it might then work).
We change this into a proper fatal error that is persistent.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/6340)
Implement support for stateful TLSv1.3 tickets, and use them if
SSL_OP_NO_TICKET is set.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Viktor Dukhovni <viktor@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6563)
This commit implements coordinate blinding, i.e., it randomizes the
representative of an elliptic curve point in its equivalence class, for
prime curves implemented through EC_GFp_simple_method,
EC_GFp_mont_method, and EC_GFp_nist_method.
This commit is derived from the patch
https://marc.info/?l=openssl-dev&m=131194808413635 by Billy Brumley.
Coordinate blinding is a generally useful side-channel countermeasure
and is (mostly) free. The function itself takes a few field
multiplicationss, but is usually only necessary at the beginning of a
scalar multiplication (as implemented in the patch). When used this way,
it makes the values that variables take (i.e., field elements in an
algorithm state) unpredictable.
For instance, this mitigates chosen EC point side-channel attacks for
settings such as ECDH and EC private key decryption, for the
aforementioned curves.
For EC_METHODs using different coordinate representations this commit
does nothing, but the corresponding coordinate blinding function can be
easily added in the future to extend these changes to such curves.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6501)
Use EVP_PKEY_set_alias_type to access
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6443)