2015-01-22 03:40:55 +00:00
|
|
|
/*
|
SCA hardening for mod. field inversion in EC_GROUP
This commit adds a dedicated function in `EC_METHOD` to access a modular
field inversion implementation suitable for the specifics of the
implemented curve, featuring SCA countermeasures.
The new pointer is defined as:
`int (*field_inv)(const EC_GROUP*, BIGNUM *r, const BIGNUM *a, BN_CTX*)`
and computes the multiplicative inverse of `a` in the underlying field,
storing the result in `r`.
Three implementations are included, each including specific SCA
countermeasures:
- `ec_GFp_simple_field_inv()`, featuring SCA hardening through
blinding.
- `ec_GFp_mont_field_inv()`, featuring SCA hardening through Fermat's
Little Theorem (FLT) inversion.
- `ec_GF2m_simple_field_inv()`, that uses `BN_GF2m_mod_inv()` which
already features SCA hardening through blinding.
From a security point of view, this also helps addressing a leakage
previously affecting conversions from projective to affine coordinates.
This commit also adds a new error reason code (i.e.,
`EC_R_CANNOT_INVERT`) to improve consistency between the three
implementations as all of them could fail for the same reason but
through different code paths resulting in inconsistent error stack
states.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
(cherry picked from commit e0033efc30b0f00476bba8f0fa5512be5dc8a3f1)
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/8262)
2019-02-02 08:53:29 +00:00
|
|
|
* Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved.
|
2017-06-15 14:16:46 +00:00
|
|
|
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
2001-03-05 20:14:00 +00:00
|
|
|
*
|
2016-05-17 19:38:09 +00:00
|
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
|
|
* in the file LICENSE in the source distribution or at
|
|
|
|
* https://www.openssl.org/source/license.html
|
2001-03-05 20:14:00 +00:00
|
|
|
*/
|
2016-05-17 19:38:09 +00:00
|
|
|
|
2001-03-07 19:54:35 +00:00
|
|
|
#include <openssl/err.h>
|
2002-05-23 13:52:36 +00:00
|
|
|
#include <openssl/symhacks.h>
|
2001-03-07 19:54:35 +00:00
|
|
|
|
2001-03-05 20:14:00 +00:00
|
|
|
#include "ec_lcl.h"
|
2001-03-07 01:17:05 +00:00
|
|
|
|
|
|
|
const EC_METHOD *EC_GFp_simple_method(void)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
static const EC_METHOD ret = {
|
|
|
|
EC_FLAGS_DEFAULT_OCT,
|
|
|
|
NID_X9_62_prime_field,
|
|
|
|
ec_GFp_simple_group_init,
|
|
|
|
ec_GFp_simple_group_finish,
|
|
|
|
ec_GFp_simple_group_clear_finish,
|
|
|
|
ec_GFp_simple_group_copy,
|
|
|
|
ec_GFp_simple_group_set_curve,
|
|
|
|
ec_GFp_simple_group_get_curve,
|
|
|
|
ec_GFp_simple_group_get_degree,
|
2016-02-28 17:48:48 +00:00
|
|
|
ec_group_simple_order_bits,
|
2015-01-22 03:40:55 +00:00
|
|
|
ec_GFp_simple_group_check_discriminant,
|
|
|
|
ec_GFp_simple_point_init,
|
|
|
|
ec_GFp_simple_point_finish,
|
|
|
|
ec_GFp_simple_point_clear_finish,
|
|
|
|
ec_GFp_simple_point_copy,
|
|
|
|
ec_GFp_simple_point_set_to_infinity,
|
|
|
|
ec_GFp_simple_set_Jprojective_coordinates_GFp,
|
|
|
|
ec_GFp_simple_get_Jprojective_coordinates_GFp,
|
|
|
|
ec_GFp_simple_point_set_affine_coordinates,
|
|
|
|
ec_GFp_simple_point_get_affine_coordinates,
|
|
|
|
0, 0, 0,
|
|
|
|
ec_GFp_simple_add,
|
|
|
|
ec_GFp_simple_dbl,
|
|
|
|
ec_GFp_simple_invert,
|
|
|
|
ec_GFp_simple_is_at_infinity,
|
|
|
|
ec_GFp_simple_is_on_curve,
|
|
|
|
ec_GFp_simple_cmp,
|
|
|
|
ec_GFp_simple_make_affine,
|
|
|
|
ec_GFp_simple_points_make_affine,
|
|
|
|
0 /* mul */ ,
|
|
|
|
0 /* precompute_mult */ ,
|
|
|
|
0 /* have_precompute_mult */ ,
|
|
|
|
ec_GFp_simple_field_mul,
|
|
|
|
ec_GFp_simple_field_sqr,
|
|
|
|
0 /* field_div */ ,
|
SCA hardening for mod. field inversion in EC_GROUP
This commit adds a dedicated function in `EC_METHOD` to access a modular
field inversion implementation suitable for the specifics of the
implemented curve, featuring SCA countermeasures.
The new pointer is defined as:
`int (*field_inv)(const EC_GROUP*, BIGNUM *r, const BIGNUM *a, BN_CTX*)`
and computes the multiplicative inverse of `a` in the underlying field,
storing the result in `r`.
Three implementations are included, each including specific SCA
countermeasures:
- `ec_GFp_simple_field_inv()`, featuring SCA hardening through
blinding.
- `ec_GFp_mont_field_inv()`, featuring SCA hardening through Fermat's
Little Theorem (FLT) inversion.
- `ec_GF2m_simple_field_inv()`, that uses `BN_GF2m_mod_inv()` which
already features SCA hardening through blinding.
From a security point of view, this also helps addressing a leakage
previously affecting conversions from projective to affine coordinates.
This commit also adds a new error reason code (i.e.,
`EC_R_CANNOT_INVERT`) to improve consistency between the three
implementations as all of them could fail for the same reason but
through different code paths resulting in inconsistent error stack
states.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
(cherry picked from commit e0033efc30b0f00476bba8f0fa5512be5dc8a3f1)
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/8262)
2019-02-02 08:53:29 +00:00
|
|
|
ec_GFp_simple_field_inv,
|
2015-01-22 03:40:55 +00:00
|
|
|
0 /* field_encode */ ,
|
|
|
|
0 /* field_decode */ ,
|
2016-02-28 17:48:48 +00:00
|
|
|
0, /* field_set_to_one */
|
|
|
|
ec_key_simple_priv2oct,
|
|
|
|
ec_key_simple_oct2priv,
|
|
|
|
0, /* set private */
|
|
|
|
ec_key_simple_generate_key,
|
|
|
|
ec_key_simple_check_key,
|
|
|
|
ec_key_simple_generate_public_key,
|
|
|
|
0, /* keycopy */
|
|
|
|
0, /* keyfinish */
|
Implement coordinate blinding for EC_POINT
This commit implements coordinate blinding, i.e., it randomizes the
representative of an elliptic curve point in its equivalence class, for
prime curves implemented through EC_GFp_simple_method,
EC_GFp_mont_method, and EC_GFp_nist_method.
This commit is derived from the patch
https://marc.info/?l=openssl-dev&m=131194808413635 by Billy Brumley.
Coordinate blinding is a generally useful side-channel countermeasure
and is (mostly) free. The function itself takes a few field
multiplicationss, but is usually only necessary at the beginning of a
scalar multiplication (as implemented in the patch). When used this way,
it makes the values that variables take (i.e., field elements in an
algorithm state) unpredictable.
For instance, this mitigates chosen EC point side-channel attacks for
settings such as ECDH and EC private key decryption, for the
aforementioned curves.
For EC_METHODs using different coordinate representations this commit
does nothing, but the corresponding coordinate blinding function can be
easily added in the future to extend these changes to such curves.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6501)
2018-06-16 14:07:40 +00:00
|
|
|
ecdh_simple_compute_key,
|
|
|
|
0, /* field_inverse_mod_ord */
|
EC point multiplication: add `ladder` scaffold
for specialized Montgomery ladder implementations
PR #6009 and #6070 replaced the default EC point multiplication path for
prime and binary curves with a unified Montgomery ladder implementation
with various timing attack defenses (for the common paths when a secret
scalar is feed to the point multiplication).
The newly introduced default implementation directly used
EC_POINT_add/dbl in the main loop.
The scaffolding introduced by this commit allows EC_METHODs to define a
specialized `ladder_step` function to improve performances by taking
advantage of efficient formulas for differential addition-and-doubling
and different coordinate systems.
- `ladder_pre` is executed before the main loop of the ladder: by
default it copies the input point P into S, and doubles it into R.
Specialized implementations could, e.g., use this hook to transition
to different coordinate systems before copying and doubling;
- `ladder_step` is the core of the Montgomery ladder loop: by default it
computes `S := R+S; R := 2R;`, but specific implementations could,
e.g., implement a more efficient formula for differential
addition-and-doubling;
- `ladder_post` is executed after the Montgomery ladder loop: by default
it's a noop, but specialized implementations could, e.g., use this
hook to transition back from the coordinate system used for optimizing
the differential addition-and-doubling or recover the y coordinate of
the result point.
This commit also renames `ec_mul_consttime` to `ec_scalar_mul_ladder`,
as it better corresponds to what this function does: nothing can be
truly said about the constant-timeness of the overall execution of this
function, given that the underlying operations are not necessarily
constant-time themselves.
What this implementation ensures is that the same fixed sequence of
operations is executed for each scalar multiplication (for a given
EC_GROUP), with no dependency on the value of the input scalar.
Co-authored-by: Sohaib ul Hassan <soh.19.hassan@gmail.com>
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6690)
2018-07-07 21:50:49 +00:00
|
|
|
ec_GFp_simple_blind_coordinates,
|
2018-07-19 08:16:07 +00:00
|
|
|
ec_GFp_simple_ladder_pre,
|
|
|
|
ec_GFp_simple_ladder_step,
|
|
|
|
ec_GFp_simple_ladder_post
|
2015-01-22 03:40:55 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
return &ret;
|
|
|
|
}
|
2001-03-07 19:54:35 +00:00
|
|
|
|
2015-01-05 00:34:00 +00:00
|
|
|
/*
|
|
|
|
* Most method functions in this file are designed to work with
|
2002-11-22 09:25:35 +00:00
|
|
|
* non-trivial representations of field elements if necessary
|
|
|
|
* (see ecp_mont.c): while standard modular addition and subtraction
|
|
|
|
* are used, the field_mul and field_sqr methods will be used for
|
|
|
|
* multiplication, and field_encode and field_decode (if defined)
|
|
|
|
* will be used for converting between representations.
|
2015-01-05 00:34:00 +00:00
|
|
|
*
|
2002-11-22 09:25:35 +00:00
|
|
|
* Functions ec_GFp_simple_points_make_affine() and
|
|
|
|
* ec_GFp_simple_point_get_affine_coordinates() specifically assume
|
|
|
|
* that if a non-trivial representation is used, it is a Montgomery
|
|
|
|
* representation (i.e. 'encoding' means multiplying by some factor R).
|
|
|
|
*/
|
|
|
|
|
2001-03-07 19:54:35 +00:00
|
|
|
int ec_GFp_simple_group_init(EC_GROUP *group)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
group->field = BN_new();
|
|
|
|
group->a = BN_new();
|
|
|
|
group->b = BN_new();
|
2015-10-30 11:12:26 +00:00
|
|
|
if (group->field == NULL || group->a == NULL || group->b == NULL) {
|
2015-04-11 14:53:27 +00:00
|
|
|
BN_free(group->field);
|
|
|
|
BN_free(group->a);
|
|
|
|
BN_free(group->b);
|
2015-01-22 03:40:55 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
group->a_is_minus3 = 0;
|
|
|
|
return 1;
|
|
|
|
}
|
2001-03-07 19:54:35 +00:00
|
|
|
|
2001-03-08 19:14:52 +00:00
|
|
|
void ec_GFp_simple_group_finish(EC_GROUP *group)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
BN_free(group->field);
|
|
|
|
BN_free(group->a);
|
|
|
|
BN_free(group->b);
|
|
|
|
}
|
2001-03-08 19:14:52 +00:00
|
|
|
|
|
|
|
void ec_GFp_simple_group_clear_finish(EC_GROUP *group)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
BN_clear_free(group->field);
|
|
|
|
BN_clear_free(group->a);
|
|
|
|
BN_clear_free(group->b);
|
|
|
|
}
|
2001-03-08 19:14:52 +00:00
|
|
|
|
|
|
|
int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
if (!BN_copy(dest->field, src->field))
|
|
|
|
return 0;
|
|
|
|
if (!BN_copy(dest->a, src->a))
|
|
|
|
return 0;
|
|
|
|
if (!BN_copy(dest->b, src->b))
|
|
|
|
return 0;
|
2001-03-08 19:14:52 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
dest->a_is_minus3 = src->a_is_minus3;
|
2001-03-08 19:14:52 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
return 1;
|
|
|
|
}
|
2001-03-08 19:14:52 +00:00
|
|
|
|
2002-08-02 14:28:37 +00:00
|
|
|
int ec_GFp_simple_group_set_curve(EC_GROUP *group,
|
2015-01-22 03:40:55 +00:00
|
|
|
const BIGNUM *p, const BIGNUM *a,
|
|
|
|
const BIGNUM *b, BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
BIGNUM *tmp_a;
|
|
|
|
|
|
|
|
/* p must be a prime > 3 */
|
|
|
|
if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
|
|
|
|
ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ctx == NULL) {
|
|
|
|
ctx = new_ctx = BN_CTX_new();
|
|
|
|
if (ctx == NULL)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
tmp_a = BN_CTX_get(ctx);
|
|
|
|
if (tmp_a == NULL)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
/* group->field */
|
|
|
|
if (!BN_copy(group->field, p))
|
|
|
|
goto err;
|
|
|
|
BN_set_negative(group->field, 0);
|
|
|
|
|
|
|
|
/* group->a */
|
|
|
|
if (!BN_nnmod(tmp_a, a, p, ctx))
|
|
|
|
goto err;
|
|
|
|
if (group->meth->field_encode) {
|
|
|
|
if (!group->meth->field_encode(group, group->a, tmp_a, ctx))
|
|
|
|
goto err;
|
|
|
|
} else if (!BN_copy(group->a, tmp_a))
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
/* group->b */
|
|
|
|
if (!BN_nnmod(group->b, b, p, ctx))
|
|
|
|
goto err;
|
|
|
|
if (group->meth->field_encode)
|
|
|
|
if (!group->meth->field_encode(group, group->b, group->b, ctx))
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
/* group->a_is_minus3 */
|
|
|
|
if (!BN_add_word(tmp_a, 3))
|
|
|
|
goto err;
|
|
|
|
group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field));
|
|
|
|
|
|
|
|
ret = 1;
|
2001-03-07 19:54:35 +00:00
|
|
|
|
|
|
|
err:
|
2015-01-22 03:40:55 +00:00
|
|
|
BN_CTX_end(ctx);
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_CTX_free(new_ctx);
|
2015-01-22 03:40:55 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
|
|
|
|
BIGNUM *b, BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
|
|
|
|
if (p != NULL) {
|
|
|
|
if (!BN_copy(p, group->field))
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (a != NULL || b != NULL) {
|
|
|
|
if (group->meth->field_decode) {
|
|
|
|
if (ctx == NULL) {
|
|
|
|
ctx = new_ctx = BN_CTX_new();
|
|
|
|
if (ctx == NULL)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if (a != NULL) {
|
|
|
|
if (!group->meth->field_decode(group, a, group->a, ctx))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
if (b != NULL) {
|
|
|
|
if (!group->meth->field_decode(group, b, group->b, ctx))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (a != NULL) {
|
|
|
|
if (!BN_copy(a, group->a))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
if (b != NULL) {
|
|
|
|
if (!BN_copy(b, group->b))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = 1;
|
2001-03-07 19:54:35 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
err:
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_CTX_free(new_ctx);
|
2015-01-22 03:40:55 +00:00
|
|
|
return ret;
|
|
|
|
}
|
2001-03-07 19:54:35 +00:00
|
|
|
|
2002-08-02 13:42:24 +00:00
|
|
|
int ec_GFp_simple_group_get_degree(const EC_GROUP *group)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
return BN_num_bits(group->field);
|
|
|
|
}
|
2002-08-02 13:42:24 +00:00
|
|
|
|
2002-03-20 10:18:07 +00:00
|
|
|
int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
|
|
|
|
const BIGNUM *p = group->field;
|
|
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
|
|
|
|
if (ctx == NULL) {
|
|
|
|
ctx = new_ctx = BN_CTX_new();
|
|
|
|
if (ctx == NULL) {
|
|
|
|
ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT,
|
|
|
|
ERR_R_MALLOC_FAILURE);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
a = BN_CTX_get(ctx);
|
|
|
|
b = BN_CTX_get(ctx);
|
|
|
|
tmp_1 = BN_CTX_get(ctx);
|
|
|
|
tmp_2 = BN_CTX_get(ctx);
|
|
|
|
order = BN_CTX_get(ctx);
|
|
|
|
if (order == NULL)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
if (group->meth->field_decode) {
|
|
|
|
if (!group->meth->field_decode(group, a, group->a, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!group->meth->field_decode(group, b, group->b, ctx))
|
|
|
|
goto err;
|
|
|
|
} else {
|
|
|
|
if (!BN_copy(a, group->a))
|
|
|
|
goto err;
|
|
|
|
if (!BN_copy(b, group->b))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
2015-01-05 11:30:03 +00:00
|
|
|
/*-
|
|
|
|
* check the discriminant:
|
|
|
|
* y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
|
|
|
|
* 0 =< a, b < p
|
|
|
|
*/
|
2015-01-22 03:40:55 +00:00
|
|
|
if (BN_is_zero(a)) {
|
|
|
|
if (BN_is_zero(b))
|
|
|
|
goto err;
|
|
|
|
} else if (!BN_is_zero(b)) {
|
|
|
|
if (!BN_mod_sqr(tmp_1, a, p, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!BN_lshift(tmp_1, tmp_2, 2))
|
|
|
|
goto err;
|
|
|
|
/* tmp_1 = 4*a^3 */
|
|
|
|
|
|
|
|
if (!BN_mod_sqr(tmp_2, b, p, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mul_word(tmp_2, 27))
|
|
|
|
goto err;
|
|
|
|
/* tmp_2 = 27*b^2 */
|
|
|
|
|
|
|
|
if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))
|
|
|
|
goto err;
|
|
|
|
if (BN_is_zero(a))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
ret = 1;
|
2002-03-18 13:10:45 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
err:
|
2019-03-18 23:58:09 +00:00
|
|
|
BN_CTX_end(ctx);
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_CTX_free(new_ctx);
|
2015-01-22 03:40:55 +00:00
|
|
|
return ret;
|
|
|
|
}
|
2002-03-18 13:10:45 +00:00
|
|
|
|
2001-03-07 19:54:35 +00:00
|
|
|
int ec_GFp_simple_point_init(EC_POINT *point)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
point->X = BN_new();
|
|
|
|
point->Y = BN_new();
|
|
|
|
point->Z = BN_new();
|
|
|
|
point->Z_is_one = 0;
|
|
|
|
|
2015-10-30 11:12:26 +00:00
|
|
|
if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_free(point->X);
|
|
|
|
BN_free(point->Y);
|
|
|
|
BN_free(point->Z);
|
2015-01-22 03:40:55 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
2001-03-07 19:54:35 +00:00
|
|
|
|
|
|
|
void ec_GFp_simple_point_finish(EC_POINT *point)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
BN_free(point->X);
|
|
|
|
BN_free(point->Y);
|
|
|
|
BN_free(point->Z);
|
|
|
|
}
|
2001-03-07 19:54:35 +00:00
|
|
|
|
|
|
|
void ec_GFp_simple_point_clear_finish(EC_POINT *point)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
BN_clear_free(point->X);
|
|
|
|
BN_clear_free(point->Y);
|
|
|
|
BN_clear_free(point->Z);
|
|
|
|
point->Z_is_one = 0;
|
|
|
|
}
|
2001-03-07 19:54:35 +00:00
|
|
|
|
|
|
|
int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
if (!BN_copy(dest->X, src->X))
|
|
|
|
return 0;
|
|
|
|
if (!BN_copy(dest->Y, src->Y))
|
|
|
|
return 0;
|
|
|
|
if (!BN_copy(dest->Z, src->Z))
|
|
|
|
return 0;
|
|
|
|
dest->Z_is_one = src->Z_is_one;
|
2018-05-21 14:24:56 +00:00
|
|
|
dest->curve_name = src->curve_name;
|
2015-01-22 03:40:55 +00:00
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
|
|
|
|
EC_POINT *point)
|
|
|
|
{
|
|
|
|
point->Z_is_one = 0;
|
|
|
|
BN_zero(point->Z);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
|
|
|
|
EC_POINT *point,
|
|
|
|
const BIGNUM *x,
|
|
|
|
const BIGNUM *y,
|
|
|
|
const BIGNUM *z,
|
|
|
|
BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (ctx == NULL) {
|
|
|
|
ctx = new_ctx = BN_CTX_new();
|
|
|
|
if (ctx == NULL)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (x != NULL) {
|
|
|
|
if (!BN_nnmod(point->X, x, group->field, ctx))
|
|
|
|
goto err;
|
|
|
|
if (group->meth->field_encode) {
|
|
|
|
if (!group->meth->field_encode(group, point->X, point->X, ctx))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (y != NULL) {
|
|
|
|
if (!BN_nnmod(point->Y, y, group->field, ctx))
|
|
|
|
goto err;
|
|
|
|
if (group->meth->field_encode) {
|
|
|
|
if (!group->meth->field_encode(group, point->Y, point->Y, ctx))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (z != NULL) {
|
|
|
|
int Z_is_one;
|
|
|
|
|
|
|
|
if (!BN_nnmod(point->Z, z, group->field, ctx))
|
|
|
|
goto err;
|
|
|
|
Z_is_one = BN_is_one(point->Z);
|
|
|
|
if (group->meth->field_encode) {
|
|
|
|
if (Z_is_one && (group->meth->field_set_to_one != 0)) {
|
|
|
|
if (!group->meth->field_set_to_one(group, point->Z, ctx))
|
|
|
|
goto err;
|
|
|
|
} else {
|
|
|
|
if (!group->
|
|
|
|
meth->field_encode(group, point->Z, point->Z, ctx))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
point->Z_is_one = Z_is_one;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = 1;
|
|
|
|
|
2001-03-08 19:14:52 +00:00
|
|
|
err:
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_CTX_free(new_ctx);
|
2015-01-22 03:40:55 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
|
|
|
|
const EC_POINT *point,
|
|
|
|
BIGNUM *x, BIGNUM *y,
|
|
|
|
BIGNUM *z, BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (group->meth->field_decode != 0) {
|
|
|
|
if (ctx == NULL) {
|
|
|
|
ctx = new_ctx = BN_CTX_new();
|
|
|
|
if (ctx == NULL)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (x != NULL) {
|
|
|
|
if (!group->meth->field_decode(group, x, point->X, ctx))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
if (y != NULL) {
|
|
|
|
if (!group->meth->field_decode(group, y, point->Y, ctx))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
if (z != NULL) {
|
|
|
|
if (!group->meth->field_decode(group, z, point->Z, ctx))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (x != NULL) {
|
|
|
|
if (!BN_copy(x, point->X))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
if (y != NULL) {
|
|
|
|
if (!BN_copy(y, point->Y))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
if (z != NULL) {
|
|
|
|
if (!BN_copy(z, point->Z))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = 1;
|
2001-03-08 19:14:52 +00:00
|
|
|
|
2001-03-08 01:23:28 +00:00
|
|
|
err:
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_CTX_free(new_ctx);
|
2015-01-22 03:40:55 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
|
|
|
|
EC_POINT *point,
|
|
|
|
const BIGNUM *x,
|
|
|
|
const BIGNUM *y, BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
if (x == NULL || y == NULL) {
|
|
|
|
/*
|
|
|
|
* unlike for projective coordinates, we do not tolerate this
|
|
|
|
*/
|
|
|
|
ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES,
|
|
|
|
ERR_R_PASSED_NULL_PARAMETER);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y,
|
|
|
|
BN_value_one(), ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
|
|
|
|
const EC_POINT *point,
|
|
|
|
BIGNUM *x, BIGNUM *y,
|
|
|
|
BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
BIGNUM *Z, *Z_1, *Z_2, *Z_3;
|
|
|
|
const BIGNUM *Z_;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (EC_POINT_is_at_infinity(group, point)) {
|
|
|
|
ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
|
|
|
|
EC_R_POINT_AT_INFINITY);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ctx == NULL) {
|
|
|
|
ctx = new_ctx = BN_CTX_new();
|
|
|
|
if (ctx == NULL)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
Z = BN_CTX_get(ctx);
|
|
|
|
Z_1 = BN_CTX_get(ctx);
|
|
|
|
Z_2 = BN_CTX_get(ctx);
|
|
|
|
Z_3 = BN_CTX_get(ctx);
|
|
|
|
if (Z_3 == NULL)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
/* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */
|
|
|
|
|
|
|
|
if (group->meth->field_decode) {
|
|
|
|
if (!group->meth->field_decode(group, Z, point->Z, ctx))
|
|
|
|
goto err;
|
|
|
|
Z_ = Z;
|
|
|
|
} else {
|
|
|
|
Z_ = point->Z;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (BN_is_one(Z_)) {
|
|
|
|
if (group->meth->field_decode) {
|
|
|
|
if (x != NULL) {
|
|
|
|
if (!group->meth->field_decode(group, x, point->X, ctx))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
if (y != NULL) {
|
|
|
|
if (!group->meth->field_decode(group, y, point->Y, ctx))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (x != NULL) {
|
|
|
|
if (!BN_copy(x, point->X))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
if (y != NULL) {
|
|
|
|
if (!BN_copy(y, point->Y))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
SCA hardening for mod. field inversion in EC_GROUP
This commit adds a dedicated function in `EC_METHOD` to access a modular
field inversion implementation suitable for the specifics of the
implemented curve, featuring SCA countermeasures.
The new pointer is defined as:
`int (*field_inv)(const EC_GROUP*, BIGNUM *r, const BIGNUM *a, BN_CTX*)`
and computes the multiplicative inverse of `a` in the underlying field,
storing the result in `r`.
Three implementations are included, each including specific SCA
countermeasures:
- `ec_GFp_simple_field_inv()`, featuring SCA hardening through
blinding.
- `ec_GFp_mont_field_inv()`, featuring SCA hardening through Fermat's
Little Theorem (FLT) inversion.
- `ec_GF2m_simple_field_inv()`, that uses `BN_GF2m_mod_inv()` which
already features SCA hardening through blinding.
From a security point of view, this also helps addressing a leakage
previously affecting conversions from projective to affine coordinates.
This commit also adds a new error reason code (i.e.,
`EC_R_CANNOT_INVERT`) to improve consistency between the three
implementations as all of them could fail for the same reason but
through different code paths resulting in inconsistent error stack
states.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
(cherry picked from commit e0033efc30b0f00476bba8f0fa5512be5dc8a3f1)
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/8262)
2019-02-02 08:53:29 +00:00
|
|
|
if (!group->meth->field_inv(group, Z_1, Z_, ctx)) {
|
2015-01-22 03:40:55 +00:00
|
|
|
ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
|
|
|
|
ERR_R_BN_LIB);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (group->meth->field_encode == 0) {
|
|
|
|
/* field_sqr works on standard representation */
|
|
|
|
if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))
|
|
|
|
goto err;
|
|
|
|
} else {
|
|
|
|
if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (x != NULL) {
|
|
|
|
/*
|
|
|
|
* in the Montgomery case, field_mul will cancel out Montgomery
|
|
|
|
* factor in X:
|
|
|
|
*/
|
|
|
|
if (!group->meth->field_mul(group, x, point->X, Z_2, ctx))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (y != NULL) {
|
|
|
|
if (group->meth->field_encode == 0) {
|
|
|
|
/*
|
|
|
|
* field_mul works on standard representation
|
|
|
|
*/
|
|
|
|
if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))
|
|
|
|
goto err;
|
|
|
|
} else {
|
|
|
|
if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* in the Montgomery case, field_mul will cancel out Montgomery
|
|
|
|
* factor in Y:
|
|
|
|
*/
|
|
|
|
if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = 1;
|
2001-03-08 01:23:28 +00:00
|
|
|
|
|
|
|
err:
|
2015-01-22 03:40:55 +00:00
|
|
|
BN_CTX_end(ctx);
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_CTX_free(new_ctx);
|
2015-01-22 03:40:55 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
|
|
|
|
const EC_POINT *b, BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
|
|
|
|
const BIGNUM *, BN_CTX *);
|
|
|
|
int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
|
|
|
const BIGNUM *p;
|
|
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (a == b)
|
|
|
|
return EC_POINT_dbl(group, r, a, ctx);
|
|
|
|
if (EC_POINT_is_at_infinity(group, a))
|
|
|
|
return EC_POINT_copy(r, b);
|
|
|
|
if (EC_POINT_is_at_infinity(group, b))
|
|
|
|
return EC_POINT_copy(r, a);
|
|
|
|
|
|
|
|
field_mul = group->meth->field_mul;
|
|
|
|
field_sqr = group->meth->field_sqr;
|
|
|
|
p = group->field;
|
|
|
|
|
|
|
|
if (ctx == NULL) {
|
|
|
|
ctx = new_ctx = BN_CTX_new();
|
|
|
|
if (ctx == NULL)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
n0 = BN_CTX_get(ctx);
|
|
|
|
n1 = BN_CTX_get(ctx);
|
|
|
|
n2 = BN_CTX_get(ctx);
|
|
|
|
n3 = BN_CTX_get(ctx);
|
|
|
|
n4 = BN_CTX_get(ctx);
|
|
|
|
n5 = BN_CTX_get(ctx);
|
|
|
|
n6 = BN_CTX_get(ctx);
|
|
|
|
if (n6 == NULL)
|
|
|
|
goto end;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note that in this function we must not read components of 'a' or 'b'
|
|
|
|
* once we have written the corresponding components of 'r'. ('r' might
|
|
|
|
* be one of 'a' or 'b'.)
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* n1, n2 */
|
|
|
|
if (b->Z_is_one) {
|
|
|
|
if (!BN_copy(n1, a->X))
|
|
|
|
goto end;
|
|
|
|
if (!BN_copy(n2, a->Y))
|
|
|
|
goto end;
|
|
|
|
/* n1 = X_a */
|
|
|
|
/* n2 = Y_a */
|
|
|
|
} else {
|
|
|
|
if (!field_sqr(group, n0, b->Z, ctx))
|
|
|
|
goto end;
|
|
|
|
if (!field_mul(group, n1, a->X, n0, ctx))
|
|
|
|
goto end;
|
|
|
|
/* n1 = X_a * Z_b^2 */
|
|
|
|
|
|
|
|
if (!field_mul(group, n0, n0, b->Z, ctx))
|
|
|
|
goto end;
|
|
|
|
if (!field_mul(group, n2, a->Y, n0, ctx))
|
|
|
|
goto end;
|
|
|
|
/* n2 = Y_a * Z_b^3 */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* n3, n4 */
|
|
|
|
if (a->Z_is_one) {
|
|
|
|
if (!BN_copy(n3, b->X))
|
|
|
|
goto end;
|
|
|
|
if (!BN_copy(n4, b->Y))
|
|
|
|
goto end;
|
|
|
|
/* n3 = X_b */
|
|
|
|
/* n4 = Y_b */
|
|
|
|
} else {
|
|
|
|
if (!field_sqr(group, n0, a->Z, ctx))
|
|
|
|
goto end;
|
|
|
|
if (!field_mul(group, n3, b->X, n0, ctx))
|
|
|
|
goto end;
|
|
|
|
/* n3 = X_b * Z_a^2 */
|
|
|
|
|
|
|
|
if (!field_mul(group, n0, n0, a->Z, ctx))
|
|
|
|
goto end;
|
|
|
|
if (!field_mul(group, n4, b->Y, n0, ctx))
|
|
|
|
goto end;
|
|
|
|
/* n4 = Y_b * Z_a^3 */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* n5, n6 */
|
|
|
|
if (!BN_mod_sub_quick(n5, n1, n3, p))
|
|
|
|
goto end;
|
|
|
|
if (!BN_mod_sub_quick(n6, n2, n4, p))
|
|
|
|
goto end;
|
|
|
|
/* n5 = n1 - n3 */
|
|
|
|
/* n6 = n2 - n4 */
|
|
|
|
|
|
|
|
if (BN_is_zero(n5)) {
|
|
|
|
if (BN_is_zero(n6)) {
|
|
|
|
/* a is the same point as b */
|
|
|
|
BN_CTX_end(ctx);
|
|
|
|
ret = EC_POINT_dbl(group, r, a, ctx);
|
|
|
|
ctx = NULL;
|
|
|
|
goto end;
|
|
|
|
} else {
|
|
|
|
/* a is the inverse of b */
|
|
|
|
BN_zero(r->Z);
|
|
|
|
r->Z_is_one = 0;
|
|
|
|
ret = 1;
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 'n7', 'n8' */
|
|
|
|
if (!BN_mod_add_quick(n1, n1, n3, p))
|
|
|
|
goto end;
|
|
|
|
if (!BN_mod_add_quick(n2, n2, n4, p))
|
|
|
|
goto end;
|
|
|
|
/* 'n7' = n1 + n3 */
|
|
|
|
/* 'n8' = n2 + n4 */
|
|
|
|
|
|
|
|
/* Z_r */
|
|
|
|
if (a->Z_is_one && b->Z_is_one) {
|
|
|
|
if (!BN_copy(r->Z, n5))
|
|
|
|
goto end;
|
|
|
|
} else {
|
|
|
|
if (a->Z_is_one) {
|
|
|
|
if (!BN_copy(n0, b->Z))
|
|
|
|
goto end;
|
|
|
|
} else if (b->Z_is_one) {
|
|
|
|
if (!BN_copy(n0, a->Z))
|
|
|
|
goto end;
|
|
|
|
} else {
|
|
|
|
if (!field_mul(group, n0, a->Z, b->Z, ctx))
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
if (!field_mul(group, r->Z, n0, n5, ctx))
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
r->Z_is_one = 0;
|
|
|
|
/* Z_r = Z_a * Z_b * n5 */
|
|
|
|
|
|
|
|
/* X_r */
|
|
|
|
if (!field_sqr(group, n0, n6, ctx))
|
|
|
|
goto end;
|
|
|
|
if (!field_sqr(group, n4, n5, ctx))
|
|
|
|
goto end;
|
|
|
|
if (!field_mul(group, n3, n1, n4, ctx))
|
|
|
|
goto end;
|
|
|
|
if (!BN_mod_sub_quick(r->X, n0, n3, p))
|
|
|
|
goto end;
|
|
|
|
/* X_r = n6^2 - n5^2 * 'n7' */
|
|
|
|
|
|
|
|
/* 'n9' */
|
|
|
|
if (!BN_mod_lshift1_quick(n0, r->X, p))
|
|
|
|
goto end;
|
|
|
|
if (!BN_mod_sub_quick(n0, n3, n0, p))
|
|
|
|
goto end;
|
|
|
|
/* n9 = n5^2 * 'n7' - 2 * X_r */
|
|
|
|
|
|
|
|
/* Y_r */
|
|
|
|
if (!field_mul(group, n0, n0, n6, ctx))
|
|
|
|
goto end;
|
|
|
|
if (!field_mul(group, n5, n4, n5, ctx))
|
|
|
|
goto end; /* now n5 is n5^3 */
|
|
|
|
if (!field_mul(group, n1, n2, n5, ctx))
|
|
|
|
goto end;
|
|
|
|
if (!BN_mod_sub_quick(n0, n0, n1, p))
|
|
|
|
goto end;
|
|
|
|
if (BN_is_odd(n0))
|
|
|
|
if (!BN_add(n0, n0, p))
|
|
|
|
goto end;
|
|
|
|
/* now 0 <= n0 < 2*p, and n0 is even */
|
|
|
|
if (!BN_rshift1(r->Y, n0))
|
|
|
|
goto end;
|
|
|
|
/* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
|
|
|
|
|
|
|
|
ret = 1;
|
2001-03-07 19:54:35 +00:00
|
|
|
|
|
|
|
end:
|
2019-03-18 23:58:09 +00:00
|
|
|
BN_CTX_end(ctx);
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_CTX_free(new_ctx);
|
2015-01-22 03:40:55 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
|
|
|
|
BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
|
|
|
|
const BIGNUM *, BN_CTX *);
|
|
|
|
int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
|
|
|
const BIGNUM *p;
|
|
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
BIGNUM *n0, *n1, *n2, *n3;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (EC_POINT_is_at_infinity(group, a)) {
|
|
|
|
BN_zero(r->Z);
|
|
|
|
r->Z_is_one = 0;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
field_mul = group->meth->field_mul;
|
|
|
|
field_sqr = group->meth->field_sqr;
|
|
|
|
p = group->field;
|
|
|
|
|
|
|
|
if (ctx == NULL) {
|
|
|
|
ctx = new_ctx = BN_CTX_new();
|
|
|
|
if (ctx == NULL)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
n0 = BN_CTX_get(ctx);
|
|
|
|
n1 = BN_CTX_get(ctx);
|
|
|
|
n2 = BN_CTX_get(ctx);
|
|
|
|
n3 = BN_CTX_get(ctx);
|
|
|
|
if (n3 == NULL)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note that in this function we must not read components of 'a' once we
|
|
|
|
* have written the corresponding components of 'r'. ('r' might the same
|
|
|
|
* as 'a'.)
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* n1 */
|
|
|
|
if (a->Z_is_one) {
|
|
|
|
if (!field_sqr(group, n0, a->X, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_lshift1_quick(n1, n0, p))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_add_quick(n0, n0, n1, p))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_add_quick(n1, n0, group->a, p))
|
|
|
|
goto err;
|
|
|
|
/* n1 = 3 * X_a^2 + a_curve */
|
|
|
|
} else if (group->a_is_minus3) {
|
|
|
|
if (!field_sqr(group, n1, a->Z, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_add_quick(n0, a->X, n1, p))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_sub_quick(n2, a->X, n1, p))
|
|
|
|
goto err;
|
|
|
|
if (!field_mul(group, n1, n0, n2, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_lshift1_quick(n0, n1, p))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_add_quick(n1, n0, n1, p))
|
|
|
|
goto err;
|
2015-01-17 00:06:54 +00:00
|
|
|
/*-
|
|
|
|
* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
|
|
|
|
* = 3 * X_a^2 - 3 * Z_a^4
|
|
|
|
*/
|
2015-01-22 03:40:55 +00:00
|
|
|
} else {
|
|
|
|
if (!field_sqr(group, n0, a->X, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_lshift1_quick(n1, n0, p))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_add_quick(n0, n0, n1, p))
|
|
|
|
goto err;
|
|
|
|
if (!field_sqr(group, n1, a->Z, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!field_sqr(group, n1, n1, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!field_mul(group, n1, n1, group->a, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_add_quick(n1, n1, n0, p))
|
|
|
|
goto err;
|
|
|
|
/* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Z_r */
|
|
|
|
if (a->Z_is_one) {
|
|
|
|
if (!BN_copy(n0, a->Y))
|
|
|
|
goto err;
|
|
|
|
} else {
|
|
|
|
if (!field_mul(group, n0, a->Y, a->Z, ctx))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
if (!BN_mod_lshift1_quick(r->Z, n0, p))
|
|
|
|
goto err;
|
|
|
|
r->Z_is_one = 0;
|
|
|
|
/* Z_r = 2 * Y_a * Z_a */
|
|
|
|
|
|
|
|
/* n2 */
|
|
|
|
if (!field_sqr(group, n3, a->Y, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!field_mul(group, n2, a->X, n3, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_lshift_quick(n2, n2, 2, p))
|
|
|
|
goto err;
|
|
|
|
/* n2 = 4 * X_a * Y_a^2 */
|
|
|
|
|
|
|
|
/* X_r */
|
|
|
|
if (!BN_mod_lshift1_quick(n0, n2, p))
|
|
|
|
goto err;
|
|
|
|
if (!field_sqr(group, r->X, n1, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_sub_quick(r->X, r->X, n0, p))
|
|
|
|
goto err;
|
|
|
|
/* X_r = n1^2 - 2 * n2 */
|
|
|
|
|
|
|
|
/* n3 */
|
|
|
|
if (!field_sqr(group, n0, n3, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_lshift_quick(n3, n0, 3, p))
|
|
|
|
goto err;
|
|
|
|
/* n3 = 8 * Y_a^4 */
|
|
|
|
|
|
|
|
/* Y_r */
|
|
|
|
if (!BN_mod_sub_quick(n0, n2, r->X, p))
|
|
|
|
goto err;
|
|
|
|
if (!field_mul(group, n0, n1, n0, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_sub_quick(r->Y, n0, n3, p))
|
|
|
|
goto err;
|
|
|
|
/* Y_r = n1 * (n2 - X_r) - n3 */
|
|
|
|
|
|
|
|
ret = 1;
|
2001-03-07 19:54:35 +00:00
|
|
|
|
|
|
|
err:
|
2015-01-22 03:40:55 +00:00
|
|
|
BN_CTX_end(ctx);
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_CTX_free(new_ctx);
|
2015-01-22 03:40:55 +00:00
|
|
|
return ret;
|
|
|
|
}
|
2001-03-07 19:54:35 +00:00
|
|
|
|
2001-03-08 19:14:52 +00:00
|
|
|
int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
|
|
|
|
/* point is its own inverse */
|
|
|
|
return 1;
|
2001-03-08 11:16:33 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
return BN_usub(point->Y, group->field, point->Y);
|
|
|
|
}
|
2001-03-08 11:16:33 +00:00
|
|
|
|
2001-03-07 19:54:35 +00:00
|
|
|
int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
return BN_is_zero(point->Z);
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
|
|
|
|
BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
|
|
|
|
const BIGNUM *, BN_CTX *);
|
|
|
|
int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
|
|
|
const BIGNUM *p;
|
|
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
BIGNUM *rh, *tmp, *Z4, *Z6;
|
|
|
|
int ret = -1;
|
|
|
|
|
|
|
|
if (EC_POINT_is_at_infinity(group, point))
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
field_mul = group->meth->field_mul;
|
|
|
|
field_sqr = group->meth->field_sqr;
|
|
|
|
p = group->field;
|
|
|
|
|
|
|
|
if (ctx == NULL) {
|
|
|
|
ctx = new_ctx = BN_CTX_new();
|
|
|
|
if (ctx == NULL)
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
rh = BN_CTX_get(ctx);
|
|
|
|
tmp = BN_CTX_get(ctx);
|
|
|
|
Z4 = BN_CTX_get(ctx);
|
|
|
|
Z6 = BN_CTX_get(ctx);
|
|
|
|
if (Z6 == NULL)
|
|
|
|
goto err;
|
|
|
|
|
2015-01-17 00:06:54 +00:00
|
|
|
/*-
|
|
|
|
* We have a curve defined by a Weierstrass equation
|
|
|
|
* y^2 = x^3 + a*x + b.
|
|
|
|
* The point to consider is given in Jacobian projective coordinates
|
|
|
|
* where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3).
|
|
|
|
* Substituting this and multiplying by Z^6 transforms the above equation into
|
|
|
|
* Y^2 = X^3 + a*X*Z^4 + b*Z^6.
|
|
|
|
* To test this, we add up the right-hand side in 'rh'.
|
|
|
|
*/
|
2015-01-22 03:40:55 +00:00
|
|
|
|
|
|
|
/* rh := X^2 */
|
|
|
|
if (!field_sqr(group, rh, point->X, ctx))
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
if (!point->Z_is_one) {
|
|
|
|
if (!field_sqr(group, tmp, point->Z, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!field_sqr(group, Z4, tmp, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!field_mul(group, Z6, Z4, tmp, ctx))
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
/* rh := (rh + a*Z^4)*X */
|
|
|
|
if (group->a_is_minus3) {
|
|
|
|
if (!BN_mod_lshift1_quick(tmp, Z4, p))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_add_quick(tmp, tmp, Z4, p))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_sub_quick(rh, rh, tmp, p))
|
|
|
|
goto err;
|
|
|
|
if (!field_mul(group, rh, rh, point->X, ctx))
|
|
|
|
goto err;
|
|
|
|
} else {
|
|
|
|
if (!field_mul(group, tmp, Z4, group->a, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_add_quick(rh, rh, tmp, p))
|
|
|
|
goto err;
|
|
|
|
if (!field_mul(group, rh, rh, point->X, ctx))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* rh := rh + b*Z^6 */
|
|
|
|
if (!field_mul(group, tmp, group->b, Z6, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!BN_mod_add_quick(rh, rh, tmp, p))
|
|
|
|
goto err;
|
|
|
|
} else {
|
|
|
|
/* point->Z_is_one */
|
|
|
|
|
|
|
|
/* rh := (rh + a)*X */
|
|
|
|
if (!BN_mod_add_quick(rh, rh, group->a, p))
|
|
|
|
goto err;
|
|
|
|
if (!field_mul(group, rh, rh, point->X, ctx))
|
|
|
|
goto err;
|
|
|
|
/* rh := rh + b */
|
|
|
|
if (!BN_mod_add_quick(rh, rh, group->b, p))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 'lh' := Y^2 */
|
|
|
|
if (!field_sqr(group, tmp, point->Y, ctx))
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
ret = (0 == BN_ucmp(tmp, rh));
|
2001-03-07 20:56:48 +00:00
|
|
|
|
|
|
|
err:
|
2015-01-22 03:40:55 +00:00
|
|
|
BN_CTX_end(ctx);
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_CTX_free(new_ctx);
|
2015-01-22 03:40:55 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
|
|
|
|
const EC_POINT *b, BN_CTX *ctx)
|
|
|
|
{
|
2015-01-17 00:06:54 +00:00
|
|
|
/*-
|
|
|
|
* return values:
|
|
|
|
* -1 error
|
|
|
|
* 0 equal (in affine coordinates)
|
|
|
|
* 1 not equal
|
|
|
|
*/
|
2015-01-22 03:40:55 +00:00
|
|
|
|
|
|
|
int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
|
|
|
|
const BIGNUM *, BN_CTX *);
|
|
|
|
int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
|
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
|
|
|
|
const BIGNUM *tmp1_, *tmp2_;
|
|
|
|
int ret = -1;
|
|
|
|
|
|
|
|
if (EC_POINT_is_at_infinity(group, a)) {
|
|
|
|
return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (EC_POINT_is_at_infinity(group, b))
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
if (a->Z_is_one && b->Z_is_one) {
|
|
|
|
return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
field_mul = group->meth->field_mul;
|
|
|
|
field_sqr = group->meth->field_sqr;
|
|
|
|
|
|
|
|
if (ctx == NULL) {
|
|
|
|
ctx = new_ctx = BN_CTX_new();
|
|
|
|
if (ctx == NULL)
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
tmp1 = BN_CTX_get(ctx);
|
|
|
|
tmp2 = BN_CTX_get(ctx);
|
|
|
|
Za23 = BN_CTX_get(ctx);
|
|
|
|
Zb23 = BN_CTX_get(ctx);
|
|
|
|
if (Zb23 == NULL)
|
|
|
|
goto end;
|
|
|
|
|
2015-01-17 00:06:54 +00:00
|
|
|
/*-
|
|
|
|
* We have to decide whether
|
|
|
|
* (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
|
|
|
|
* or equivalently, whether
|
|
|
|
* (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
|
|
|
|
*/
|
2015-01-22 03:40:55 +00:00
|
|
|
|
|
|
|
if (!b->Z_is_one) {
|
|
|
|
if (!field_sqr(group, Zb23, b->Z, ctx))
|
|
|
|
goto end;
|
|
|
|
if (!field_mul(group, tmp1, a->X, Zb23, ctx))
|
|
|
|
goto end;
|
|
|
|
tmp1_ = tmp1;
|
|
|
|
} else
|
|
|
|
tmp1_ = a->X;
|
|
|
|
if (!a->Z_is_one) {
|
|
|
|
if (!field_sqr(group, Za23, a->Z, ctx))
|
|
|
|
goto end;
|
|
|
|
if (!field_mul(group, tmp2, b->X, Za23, ctx))
|
|
|
|
goto end;
|
|
|
|
tmp2_ = tmp2;
|
|
|
|
} else
|
|
|
|
tmp2_ = b->X;
|
|
|
|
|
|
|
|
/* compare X_a*Z_b^2 with X_b*Z_a^2 */
|
|
|
|
if (BN_cmp(tmp1_, tmp2_) != 0) {
|
|
|
|
ret = 1; /* points differ */
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!b->Z_is_one) {
|
|
|
|
if (!field_mul(group, Zb23, Zb23, b->Z, ctx))
|
|
|
|
goto end;
|
|
|
|
if (!field_mul(group, tmp1, a->Y, Zb23, ctx))
|
|
|
|
goto end;
|
|
|
|
/* tmp1_ = tmp1 */
|
|
|
|
} else
|
|
|
|
tmp1_ = a->Y;
|
|
|
|
if (!a->Z_is_one) {
|
|
|
|
if (!field_mul(group, Za23, Za23, a->Z, ctx))
|
|
|
|
goto end;
|
|
|
|
if (!field_mul(group, tmp2, b->Y, Za23, ctx))
|
|
|
|
goto end;
|
|
|
|
/* tmp2_ = tmp2 */
|
|
|
|
} else
|
|
|
|
tmp2_ = b->Y;
|
|
|
|
|
|
|
|
/* compare Y_a*Z_b^3 with Y_b*Z_a^3 */
|
|
|
|
if (BN_cmp(tmp1_, tmp2_) != 0) {
|
|
|
|
ret = 1; /* points differ */
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* points are equal */
|
|
|
|
ret = 0;
|
2001-03-08 19:14:52 +00:00
|
|
|
|
|
|
|
end:
|
2015-01-22 03:40:55 +00:00
|
|
|
BN_CTX_end(ctx);
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_CTX_free(new_ctx);
|
2015-01-22 03:40:55 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
|
|
|
|
BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
BIGNUM *x, *y;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
if (ctx == NULL) {
|
|
|
|
ctx = new_ctx = BN_CTX_new();
|
|
|
|
if (ctx == NULL)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
x = BN_CTX_get(ctx);
|
|
|
|
y = BN_CTX_get(ctx);
|
|
|
|
if (y == NULL)
|
|
|
|
goto err;
|
|
|
|
|
2018-07-30 15:40:18 +00:00
|
|
|
if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
|
2015-01-22 03:40:55 +00:00
|
|
|
goto err;
|
2018-07-30 15:40:18 +00:00
|
|
|
if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx))
|
2015-01-22 03:40:55 +00:00
|
|
|
goto err;
|
|
|
|
if (!point->Z_is_one) {
|
|
|
|
ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = 1;
|
2001-03-07 20:56:48 +00:00
|
|
|
|
2001-03-08 01:23:28 +00:00
|
|
|
err:
|
2015-01-22 03:40:55 +00:00
|
|
|
BN_CTX_end(ctx);
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_CTX_free(new_ctx);
|
2015-01-22 03:40:55 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
|
|
|
|
EC_POINT *points[], BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
BIGNUM *tmp, *tmp_Z;
|
|
|
|
BIGNUM **prod_Z = NULL;
|
|
|
|
size_t i;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (num == 0)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
if (ctx == NULL) {
|
|
|
|
ctx = new_ctx = BN_CTX_new();
|
|
|
|
if (ctx == NULL)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
tmp = BN_CTX_get(ctx);
|
|
|
|
tmp_Z = BN_CTX_get(ctx);
|
2017-06-22 10:52:29 +00:00
|
|
|
if (tmp_Z == NULL)
|
2015-01-22 03:40:55 +00:00
|
|
|
goto err;
|
|
|
|
|
2017-12-07 18:39:34 +00:00
|
|
|
prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
|
2015-01-22 03:40:55 +00:00
|
|
|
if (prod_Z == NULL)
|
|
|
|
goto err;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
|
|
prod_Z[i] = BN_new();
|
|
|
|
if (prod_Z[i] == NULL)
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
|
|
|
|
* skipping any zero-valued inputs (pretend that they're 1).
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (!BN_is_zero(points[0]->Z)) {
|
|
|
|
if (!BN_copy(prod_Z[0], points[0]->Z))
|
|
|
|
goto err;
|
|
|
|
} else {
|
|
|
|
if (group->meth->field_set_to_one != 0) {
|
|
|
|
if (!group->meth->field_set_to_one(group, prod_Z[0], ctx))
|
|
|
|
goto err;
|
|
|
|
} else {
|
|
|
|
if (!BN_one(prod_Z[0]))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 1; i < num; i++) {
|
|
|
|
if (!BN_is_zero(points[i]->Z)) {
|
|
|
|
if (!group->
|
|
|
|
meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z,
|
|
|
|
ctx))
|
|
|
|
goto err;
|
|
|
|
} else {
|
|
|
|
if (!BN_copy(prod_Z[i], prod_Z[i - 1]))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Now use a single explicit inversion to replace every non-zero
|
|
|
|
* points[i]->Z by its inverse.
|
|
|
|
*/
|
|
|
|
|
SCA hardening for mod. field inversion in EC_GROUP
This commit adds a dedicated function in `EC_METHOD` to access a modular
field inversion implementation suitable for the specifics of the
implemented curve, featuring SCA countermeasures.
The new pointer is defined as:
`int (*field_inv)(const EC_GROUP*, BIGNUM *r, const BIGNUM *a, BN_CTX*)`
and computes the multiplicative inverse of `a` in the underlying field,
storing the result in `r`.
Three implementations are included, each including specific SCA
countermeasures:
- `ec_GFp_simple_field_inv()`, featuring SCA hardening through
blinding.
- `ec_GFp_mont_field_inv()`, featuring SCA hardening through Fermat's
Little Theorem (FLT) inversion.
- `ec_GF2m_simple_field_inv()`, that uses `BN_GF2m_mod_inv()` which
already features SCA hardening through blinding.
From a security point of view, this also helps addressing a leakage
previously affecting conversions from projective to affine coordinates.
This commit also adds a new error reason code (i.e.,
`EC_R_CANNOT_INVERT`) to improve consistency between the three
implementations as all of them could fail for the same reason but
through different code paths resulting in inconsistent error stack
states.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
(cherry picked from commit e0033efc30b0f00476bba8f0fa5512be5dc8a3f1)
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/8262)
2019-02-02 08:53:29 +00:00
|
|
|
if (!group->meth->field_inv(group, tmp, prod_Z[num - 1], ctx)) {
|
2015-01-22 03:40:55 +00:00
|
|
|
ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
if (group->meth->field_encode != 0) {
|
|
|
|
/*
|
|
|
|
* In the Montgomery case, we just turned R*H (representing H) into
|
|
|
|
* 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to
|
|
|
|
* multiply by the Montgomery factor twice.
|
|
|
|
*/
|
|
|
|
if (!group->meth->field_encode(group, tmp, tmp, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!group->meth->field_encode(group, tmp, tmp, ctx))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = num - 1; i > 0; --i) {
|
|
|
|
/*
|
|
|
|
* Loop invariant: tmp is the product of the inverses of points[0]->Z
|
|
|
|
* .. points[i]->Z (zero-valued inputs skipped).
|
|
|
|
*/
|
|
|
|
if (!BN_is_zero(points[i]->Z)) {
|
|
|
|
/*
|
|
|
|
* Set tmp_Z to the inverse of points[i]->Z (as product of Z
|
|
|
|
* inverses 0 .. i, Z values 0 .. i - 1).
|
|
|
|
*/
|
|
|
|
if (!group->
|
|
|
|
meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx))
|
|
|
|
goto err;
|
|
|
|
/*
|
|
|
|
* Update tmp to satisfy the loop invariant for i - 1.
|
|
|
|
*/
|
|
|
|
if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx))
|
|
|
|
goto err;
|
|
|
|
/* Replace points[i]->Z by its inverse. */
|
|
|
|
if (!BN_copy(points[i]->Z, tmp_Z))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!BN_is_zero(points[0]->Z)) {
|
|
|
|
/* Replace points[0]->Z by its inverse. */
|
|
|
|
if (!BN_copy(points[0]->Z, tmp))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Finally, fix up the X and Y coordinates for all points. */
|
|
|
|
|
|
|
|
for (i = 0; i < num; i++) {
|
|
|
|
EC_POINT *p = points[i];
|
|
|
|
|
|
|
|
if (!BN_is_zero(p->Z)) {
|
|
|
|
/* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */
|
|
|
|
|
|
|
|
if (!group->meth->field_sqr(group, tmp, p->Z, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx))
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx))
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
if (group->meth->field_set_to_one != 0) {
|
|
|
|
if (!group->meth->field_set_to_one(group, p->Z, ctx))
|
|
|
|
goto err;
|
|
|
|
} else {
|
|
|
|
if (!BN_one(p->Z))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
p->Z_is_one = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = 1;
|
2014-08-01 15:18:14 +00:00
|
|
|
|
2001-03-10 23:18:35 +00:00
|
|
|
err:
|
2015-01-22 03:40:55 +00:00
|
|
|
BN_CTX_end(ctx);
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_CTX_free(new_ctx);
|
2015-01-22 03:40:55 +00:00
|
|
|
if (prod_Z != NULL) {
|
|
|
|
for (i = 0; i < num; i++) {
|
|
|
|
if (prod_Z[i] == NULL)
|
|
|
|
break;
|
|
|
|
BN_clear_free(prod_Z[i]);
|
|
|
|
}
|
|
|
|
OPENSSL_free(prod_Z);
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
|
|
|
const BIGNUM *b, BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
return BN_mod_mul(r, a, b, group->field, ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
|
|
|
BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
return BN_mod_sqr(r, a, group->field, ctx);
|
|
|
|
}
|
Implement coordinate blinding for EC_POINT
This commit implements coordinate blinding, i.e., it randomizes the
representative of an elliptic curve point in its equivalence class, for
prime curves implemented through EC_GFp_simple_method,
EC_GFp_mont_method, and EC_GFp_nist_method.
This commit is derived from the patch
https://marc.info/?l=openssl-dev&m=131194808413635 by Billy Brumley.
Coordinate blinding is a generally useful side-channel countermeasure
and is (mostly) free. The function itself takes a few field
multiplicationss, but is usually only necessary at the beginning of a
scalar multiplication (as implemented in the patch). When used this way,
it makes the values that variables take (i.e., field elements in an
algorithm state) unpredictable.
For instance, this mitigates chosen EC point side-channel attacks for
settings such as ECDH and EC private key decryption, for the
aforementioned curves.
For EC_METHODs using different coordinate representations this commit
does nothing, but the corresponding coordinate blinding function can be
easily added in the future to extend these changes to such curves.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6501)
2018-06-16 14:07:40 +00:00
|
|
|
|
SCA hardening for mod. field inversion in EC_GROUP
This commit adds a dedicated function in `EC_METHOD` to access a modular
field inversion implementation suitable for the specifics of the
implemented curve, featuring SCA countermeasures.
The new pointer is defined as:
`int (*field_inv)(const EC_GROUP*, BIGNUM *r, const BIGNUM *a, BN_CTX*)`
and computes the multiplicative inverse of `a` in the underlying field,
storing the result in `r`.
Three implementations are included, each including specific SCA
countermeasures:
- `ec_GFp_simple_field_inv()`, featuring SCA hardening through
blinding.
- `ec_GFp_mont_field_inv()`, featuring SCA hardening through Fermat's
Little Theorem (FLT) inversion.
- `ec_GF2m_simple_field_inv()`, that uses `BN_GF2m_mod_inv()` which
already features SCA hardening through blinding.
From a security point of view, this also helps addressing a leakage
previously affecting conversions from projective to affine coordinates.
This commit also adds a new error reason code (i.e.,
`EC_R_CANNOT_INVERT`) to improve consistency between the three
implementations as all of them could fail for the same reason but
through different code paths resulting in inconsistent error stack
states.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
(cherry picked from commit e0033efc30b0f00476bba8f0fa5512be5dc8a3f1)
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/8262)
2019-02-02 08:53:29 +00:00
|
|
|
/*-
|
|
|
|
* Computes the multiplicative inverse of a in GF(p), storing the result in r.
|
|
|
|
* If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error.
|
|
|
|
* Since we don't have a Mont structure here, SCA hardening is with blinding.
|
|
|
|
*/
|
|
|
|
int ec_GFp_simple_field_inv(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
|
|
|
BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
BIGNUM *e = NULL;
|
|
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
if ((e = BN_CTX_get(ctx)) == NULL)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
do {
|
|
|
|
if (!BN_priv_rand_range(e, group->field))
|
|
|
|
goto err;
|
|
|
|
} while (BN_is_zero(e));
|
|
|
|
|
|
|
|
/* r := a * e */
|
|
|
|
if (!group->meth->field_mul(group, r, a, e, ctx))
|
|
|
|
goto err;
|
|
|
|
/* r := 1/(a * e) */
|
|
|
|
if (!BN_mod_inverse(r, r, group->field, ctx)) {
|
|
|
|
ECerr(EC_F_EC_GFP_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
/* r := e/(a * e) = 1/a */
|
|
|
|
if (!group->meth->field_mul(group, r, r, e, ctx))
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
ret = 1;
|
|
|
|
|
|
|
|
err:
|
|
|
|
BN_CTX_end(ctx);
|
|
|
|
BN_CTX_free(new_ctx);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
Implement coordinate blinding for EC_POINT
This commit implements coordinate blinding, i.e., it randomizes the
representative of an elliptic curve point in its equivalence class, for
prime curves implemented through EC_GFp_simple_method,
EC_GFp_mont_method, and EC_GFp_nist_method.
This commit is derived from the patch
https://marc.info/?l=openssl-dev&m=131194808413635 by Billy Brumley.
Coordinate blinding is a generally useful side-channel countermeasure
and is (mostly) free. The function itself takes a few field
multiplicationss, but is usually only necessary at the beginning of a
scalar multiplication (as implemented in the patch). When used this way,
it makes the values that variables take (i.e., field elements in an
algorithm state) unpredictable.
For instance, this mitigates chosen EC point side-channel attacks for
settings such as ECDH and EC private key decryption, for the
aforementioned curves.
For EC_METHODs using different coordinate representations this commit
does nothing, but the corresponding coordinate blinding function can be
easily added in the future to extend these changes to such curves.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6501)
2018-06-16 14:07:40 +00:00
|
|
|
/*-
|
|
|
|
* Apply randomization of EC point projective coordinates:
|
|
|
|
*
|
|
|
|
* (X, Y ,Z ) = (lambda^2*X, lambda^3*Y, lambda*Z)
|
|
|
|
* lambda = [1,group->field)
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
int ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p,
|
|
|
|
BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
BIGNUM *lambda = NULL;
|
|
|
|
BIGNUM *temp = NULL;
|
|
|
|
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
lambda = BN_CTX_get(ctx);
|
|
|
|
temp = BN_CTX_get(ctx);
|
|
|
|
if (temp == NULL) {
|
|
|
|
ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_MALLOC_FAILURE);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* make sure lambda is not zero */
|
|
|
|
do {
|
|
|
|
if (!BN_priv_rand_range(lambda, group->field)) {
|
|
|
|
ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_BN_LIB);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
} while (BN_is_zero(lambda));
|
|
|
|
|
|
|
|
/* if field_encode defined convert between representations */
|
|
|
|
if (group->meth->field_encode != NULL
|
|
|
|
&& !group->meth->field_encode(group, lambda, lambda, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!group->meth->field_mul(group, p->Z, p->Z, lambda, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!group->meth->field_sqr(group, temp, lambda, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!group->meth->field_mul(group, p->X, p->X, temp, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!group->meth->field_mul(group, temp, temp, lambda, ctx))
|
|
|
|
goto err;
|
|
|
|
if (!group->meth->field_mul(group, p->Y, p->Y, temp, ctx))
|
|
|
|
goto err;
|
|
|
|
p->Z_is_one = 0;
|
|
|
|
|
|
|
|
ret = 1;
|
|
|
|
|
|
|
|
err:
|
2018-07-19 08:16:07 +00:00
|
|
|
BN_CTX_end(ctx);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*-
|
|
|
|
* Set s := p, r := 2p.
|
|
|
|
*
|
|
|
|
* For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve
|
|
|
|
* multiplication resistant against side channel attacks" appendix, as described
|
|
|
|
* at
|
|
|
|
* https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2
|
|
|
|
*
|
|
|
|
* The input point p will be in randomized Jacobian projective coords:
|
|
|
|
* x = X/Z**2, y=Y/Z**3
|
|
|
|
*
|
|
|
|
* The output points p, s, and r are converted to standard (homogeneous)
|
|
|
|
* projective coords:
|
|
|
|
* x = X/Z, y=Y/Z
|
|
|
|
*/
|
|
|
|
int ec_GFp_simple_ladder_pre(const EC_GROUP *group,
|
|
|
|
EC_POINT *r, EC_POINT *s,
|
|
|
|
EC_POINT *p, BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
BIGNUM *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
|
|
|
|
|
|
|
|
t1 = r->Z;
|
|
|
|
t2 = r->Y;
|
|
|
|
t3 = s->X;
|
|
|
|
t4 = r->X;
|
|
|
|
t5 = s->Y;
|
|
|
|
t6 = s->Z;
|
|
|
|
|
|
|
|
/* convert p: (X,Y,Z) -> (XZ,Y,Z**3) */
|
|
|
|
if (!group->meth->field_mul(group, p->X, p->X, p->Z, ctx)
|
|
|
|
|| !group->meth->field_sqr(group, t1, p->Z, ctx)
|
|
|
|
|| !group->meth->field_mul(group, p->Z, p->Z, t1, ctx)
|
|
|
|
/* r := 2p */
|
|
|
|
|| !group->meth->field_sqr(group, t2, p->X, ctx)
|
|
|
|
|| !group->meth->field_sqr(group, t3, p->Z, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t4, t3, group->a, ctx)
|
|
|
|
|| !BN_mod_sub_quick(t5, t2, t4, group->field)
|
|
|
|
|| !BN_mod_add_quick(t2, t2, t4, group->field)
|
|
|
|
|| !group->meth->field_sqr(group, t5, t5, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t6, t3, group->b, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t1, p->X, p->Z, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t4, t1, t6, ctx)
|
|
|
|
|| !BN_mod_lshift_quick(t4, t4, 3, group->field)
|
|
|
|
/* r->X coord output */
|
|
|
|
|| !BN_mod_sub_quick(r->X, t5, t4, group->field)
|
|
|
|
|| !group->meth->field_mul(group, t1, t1, t2, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t2, t3, t6, ctx)
|
|
|
|
|| !BN_mod_add_quick(t1, t1, t2, group->field)
|
|
|
|
/* r->Z coord output */
|
|
|
|
|| !BN_mod_lshift_quick(r->Z, t1, 2, group->field)
|
|
|
|
|| !EC_POINT_copy(s, p))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
r->Z_is_one = 0;
|
|
|
|
s->Z_is_one = 0;
|
|
|
|
p->Z_is_one = 0;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*-
|
2018-08-17 20:00:44 +00:00
|
|
|
* Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi
|
2018-07-19 08:16:07 +00:00
|
|
|
* "A fast parallel elliptic curve multiplication resistant against side channel
|
|
|
|
* attacks", as described at
|
2018-08-17 20:00:44 +00:00
|
|
|
* https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-4
|
2018-07-19 08:16:07 +00:00
|
|
|
*/
|
|
|
|
int ec_GFp_simple_ladder_step(const EC_GROUP *group,
|
|
|
|
EC_POINT *r, EC_POINT *s,
|
|
|
|
EC_POINT *p, BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6, *t7 = NULL;
|
|
|
|
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
t0 = BN_CTX_get(ctx);
|
|
|
|
t1 = BN_CTX_get(ctx);
|
|
|
|
t2 = BN_CTX_get(ctx);
|
|
|
|
t3 = BN_CTX_get(ctx);
|
|
|
|
t4 = BN_CTX_get(ctx);
|
|
|
|
t5 = BN_CTX_get(ctx);
|
|
|
|
t6 = BN_CTX_get(ctx);
|
|
|
|
t7 = BN_CTX_get(ctx);
|
|
|
|
|
|
|
|
if (t7 == NULL
|
|
|
|
|| !group->meth->field_mul(group, t0, r->X, s->X, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t1, r->Z, s->Z, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t2, r->X, s->Z, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t3, r->Z, s->X, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t4, group->a, t1, ctx)
|
2018-08-17 20:00:44 +00:00
|
|
|
|| !BN_mod_add_quick(t0, t0, t4, group->field)
|
|
|
|
|| !BN_mod_add_quick(t4, t3, t2, group->field)
|
|
|
|
|| !group->meth->field_mul(group, t0, t4, t0, ctx)
|
|
|
|
|| !group->meth->field_sqr(group, t1, t1, ctx)
|
|
|
|
|| !BN_mod_lshift_quick(t7, group->b, 2, group->field)
|
|
|
|
|| !group->meth->field_mul(group, t1, t7, t1, ctx)
|
|
|
|
|| !BN_mod_lshift1_quick(t0, t0, group->field)
|
|
|
|
|| !BN_mod_add_quick(t0, t1, t0, group->field)
|
|
|
|
|| !BN_mod_sub_quick(t1, t2, t3, group->field)
|
|
|
|
|| !group->meth->field_sqr(group, t1, t1, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t3, t1, p->X, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t0, p->Z, t0, ctx)
|
2018-07-19 08:16:07 +00:00
|
|
|
/* s->X coord output */
|
2018-08-17 20:00:44 +00:00
|
|
|
|| !BN_mod_sub_quick(s->X, t0, t3, group->field)
|
2018-07-19 08:16:07 +00:00
|
|
|
/* s->Z coord output */
|
2018-08-17 20:00:44 +00:00
|
|
|
|| !group->meth->field_mul(group, s->Z, p->Z, t1, ctx)
|
|
|
|
|| !group->meth->field_sqr(group, t3, r->X, ctx)
|
|
|
|
|| !group->meth->field_sqr(group, t2, r->Z, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t4, t2, group->a, ctx)
|
|
|
|
|| !BN_mod_add_quick(t5, r->X, r->Z, group->field)
|
|
|
|
|| !group->meth->field_sqr(group, t5, t5, ctx)
|
|
|
|
|| !BN_mod_sub_quick(t5, t5, t3, group->field)
|
|
|
|
|| !BN_mod_sub_quick(t5, t5, t2, group->field)
|
|
|
|
|| !BN_mod_sub_quick(t6, t3, t4, group->field)
|
2018-07-19 08:16:07 +00:00
|
|
|
|| !group->meth->field_sqr(group, t6, t6, ctx)
|
2018-08-17 20:00:44 +00:00
|
|
|
|| !group->meth->field_mul(group, t0, t2, t5, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t0, t7, t0, ctx)
|
2018-07-19 08:16:07 +00:00
|
|
|
/* r->X coord output */
|
2018-08-17 20:00:44 +00:00
|
|
|
|| !BN_mod_sub_quick(r->X, t6, t0, group->field)
|
|
|
|
|| !BN_mod_add_quick(t6, t3, t4, group->field)
|
|
|
|
|| !group->meth->field_sqr(group, t3, t2, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t7, t3, t7, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t5, t5, t6, ctx)
|
|
|
|
|| !BN_mod_lshift1_quick(t5, t5, group->field)
|
2018-07-19 08:16:07 +00:00
|
|
|
/* r->Z coord output */
|
2018-08-17 20:00:44 +00:00
|
|
|
|| !BN_mod_add_quick(r->Z, t7, t5, group->field))
|
2018-07-19 08:16:07 +00:00
|
|
|
goto err;
|
|
|
|
|
|
|
|
ret = 1;
|
|
|
|
|
|
|
|
err:
|
|
|
|
BN_CTX_end(ctx);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*-
|
|
|
|
* Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass
|
|
|
|
* Elliptic Curves and Side-Channel Attacks", modified to work in projective
|
|
|
|
* coordinates and return r in Jacobian projective coordinates.
|
|
|
|
*
|
|
|
|
* X4 = two*Y1*X2*Z3*Z2*Z1;
|
|
|
|
* Y4 = two*b*Z3*SQR(Z2*Z1) + Z3*(a*Z2*Z1+X1*X2)*(X1*Z2+X2*Z1) - X3*SQR(X1*Z2-X2*Z1);
|
|
|
|
* Z4 = two*Y1*Z3*SQR(Z2)*Z1;
|
|
|
|
*
|
|
|
|
* Z4 != 0 because:
|
|
|
|
* - Z1==0 implies p is at infinity, which would have caused an early exit in
|
|
|
|
* the caller;
|
|
|
|
* - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch);
|
|
|
|
* - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch);
|
|
|
|
* - Y1==0 implies p has order 2, so either r or s are infinity and handled by
|
|
|
|
* one of the BN_is_zero(...) branches.
|
|
|
|
*/
|
|
|
|
int ec_GFp_simple_ladder_post(const EC_GROUP *group,
|
|
|
|
EC_POINT *r, EC_POINT *s,
|
|
|
|
EC_POINT *p, BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
|
|
|
|
|
|
|
|
if (BN_is_zero(r->Z))
|
|
|
|
return EC_POINT_set_to_infinity(group, r);
|
|
|
|
|
|
|
|
if (BN_is_zero(s->Z)) {
|
|
|
|
/* (X,Y,Z) -> (XZ,YZ**2,Z) */
|
|
|
|
if (!group->meth->field_mul(group, r->X, p->X, p->Z, ctx)
|
|
|
|
|| !group->meth->field_sqr(group, r->Z, p->Z, ctx)
|
|
|
|
|| !group->meth->field_mul(group, r->Y, p->Y, r->Z, ctx)
|
|
|
|
|| !BN_copy(r->Z, p->Z)
|
|
|
|
|| !EC_POINT_invert(group, r, ctx))
|
|
|
|
return 0;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
t0 = BN_CTX_get(ctx);
|
|
|
|
t1 = BN_CTX_get(ctx);
|
|
|
|
t2 = BN_CTX_get(ctx);
|
|
|
|
t3 = BN_CTX_get(ctx);
|
|
|
|
t4 = BN_CTX_get(ctx);
|
|
|
|
t5 = BN_CTX_get(ctx);
|
|
|
|
t6 = BN_CTX_get(ctx);
|
|
|
|
|
|
|
|
if (t6 == NULL
|
|
|
|
|| !BN_mod_lshift1_quick(t0, p->Y, group->field)
|
|
|
|
|| !group->meth->field_mul(group, t1, r->X, p->Z, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t2, r->Z, s->Z, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t2, t1, t2, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t3, t2, t0, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t2, r->Z, p->Z, ctx)
|
|
|
|
|| !group->meth->field_sqr(group, t4, t2, ctx)
|
|
|
|
|| !BN_mod_lshift1_quick(t5, group->b, group->field)
|
|
|
|
|| !group->meth->field_mul(group, t4, t4, t5, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t6, t2, group->a, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t5, r->X, p->X, ctx)
|
|
|
|
|| !BN_mod_add_quick(t5, t6, t5, group->field)
|
|
|
|
|| !group->meth->field_mul(group, t6, r->Z, p->X, ctx)
|
|
|
|
|| !BN_mod_add_quick(t2, t6, t1, group->field)
|
|
|
|
|| !group->meth->field_mul(group, t5, t5, t2, ctx)
|
|
|
|
|| !BN_mod_sub_quick(t6, t6, t1, group->field)
|
|
|
|
|| !group->meth->field_sqr(group, t6, t6, ctx)
|
|
|
|
|| !group->meth->field_mul(group, t6, t6, s->X, ctx)
|
|
|
|
|| !BN_mod_add_quick(t4, t5, t4, group->field)
|
|
|
|
|| !group->meth->field_mul(group, t4, t4, s->Z, ctx)
|
|
|
|
|| !BN_mod_sub_quick(t4, t4, t6, group->field)
|
|
|
|
|| !group->meth->field_sqr(group, t5, r->Z, ctx)
|
|
|
|
|| !group->meth->field_mul(group, r->Z, p->Z, s->Z, ctx)
|
|
|
|
|| !group->meth->field_mul(group, r->Z, t5, r->Z, ctx)
|
|
|
|
|| !group->meth->field_mul(group, r->Z, r->Z, t0, ctx)
|
|
|
|
/* t3 := X, t4 := Y */
|
|
|
|
/* (X,Y,Z) -> (XZ,YZ**2,Z) */
|
|
|
|
|| !group->meth->field_mul(group, r->X, t3, r->Z, ctx)
|
|
|
|
|| !group->meth->field_sqr(group, t3, r->Z, ctx)
|
|
|
|
|| !group->meth->field_mul(group, r->Y, t4, t3, ctx))
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
ret = 1;
|
|
|
|
|
|
|
|
err:
|
|
|
|
BN_CTX_end(ctx);
|
|
|
|
return ret;
|
Implement coordinate blinding for EC_POINT
This commit implements coordinate blinding, i.e., it randomizes the
representative of an elliptic curve point in its equivalence class, for
prime curves implemented through EC_GFp_simple_method,
EC_GFp_mont_method, and EC_GFp_nist_method.
This commit is derived from the patch
https://marc.info/?l=openssl-dev&m=131194808413635 by Billy Brumley.
Coordinate blinding is a generally useful side-channel countermeasure
and is (mostly) free. The function itself takes a few field
multiplicationss, but is usually only necessary at the beginning of a
scalar multiplication (as implemented in the patch). When used this way,
it makes the values that variables take (i.e., field elements in an
algorithm state) unpredictable.
For instance, this mitigates chosen EC point side-channel attacks for
settings such as ECDH and EC private key decryption, for the
aforementioned curves.
For EC_METHODs using different coordinate representations this commit
does nothing, but the corresponding coordinate blinding function can be
easily added in the future to extend these changes to such curves.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6501)
2018-06-16 14:07:40 +00:00
|
|
|
}
|